A New Implementation of Sparse Gaussian
Elimination

ROBERT SCHREIBER
Stanford University

An mmplementation of sparse LDL™ and LU factorization and back substitution, based on a new
scheme for storing sparse matrices, 1s presented. The new method appears to be as efficient 1n terms
of work and storage as existing schemes It 1s more amenable to efficient implementation on fast
pipelined scientific computers

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
sparse and very large systems; G4 [Mathematics of Computing], Mathematical Software—
algorithm analysts

General Terms' Algorithms, Theory

Additional Key Words and Phrases' Sparse matrix, sparse systems of linear equations

1. INTRODUCTION

Let A be an n X n, irreducible, symmetric positive definite matrix. The system

can be solved by a Cholesky factorization

A= LDL", (1.2)
with L unit lower triangular and D diagonal, and forward and backward solves
Lz=b, L'x=D7'z (1.3)

When only a small fraction of the elements of A are nonzero, A is said to be
sparse. When a sparse matrix is factored, “fill-in” occurs: the triangular factors
contain nonzeros in positions where A has zeros. We use the term sparse Gaussian
elimination to refer to methods for triangular factorization and back substitution
that take maximum advantage of zeros in the matrix and the factors. We present
a new way to implement sparse Gaussian elimination in this paper.

Ordinarily, the rows and columns of A are first permuted so that the fill-in is
made small. We are not concerned with the problem of finding such permutations.

Sparse Cholesky factorization is ordinarily implemented as a two-step process.
First, the nonzero structure of the factor is computed by a symbolic factorization

Partial support has been provided by the NASA-Ames Research Center, Moffet Field, Calif., under
Interchange No NCA2-OR745-002.

Author’s address Department of Computer Science, Stanford University, Stanford, CA 94305.
Permission to copy without fee all or part of this maternal 1s granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1982 ACM 0098-3500,/82/0900-0255 $00.75

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982, Pages 256-276

A New Implementation of Sparse Gaussian Eimination . 257

R R OR

x Fig. 1. Standard column-oriented storage for a

sparse matrix.
aa: a; 31 41 22 32 33 43 44

row. 1 3 4 2 3 3 4 4
colbegin 1 4 6 8

step. Using a data structure provided by the symbolic step, a numeric factorization
computes the (nonzero) elements of L. The elements, including any fill-ins, are
stored in predetermined locations.

The usual data structure is this. Elements of the lower triangle of A, including
zeros that later fill in, are stored in a one-dimensional array, which we call aa. A
separate array, row, records the row to which the corresponding element of array
aa belongs: if ag is stored at aa(12), then row(12) = 6. Columns of A occupy
successive contiguous blocks of aa and are sorted by row. Pointers to diagonal
elements are stored in an array, colbegin. Figure 1 gives an example of this
scheme.

This paper proposes a method for implementing sparse elimination which uses
a new scheme to store A and L. A tree structure links every column k& < n of A
to the first column j > % such that [, # 0. We say that j = next (k). Then, instead
of the row to which a nonzero element belongs (its absolute row index), a pointer
to the location in aa of the nonzero in the same row (say row i, { > k) and the
next column is stored: the pointer for /. points to the storage for [,,. Later it is
shown that if /,, # 0, then [,, % 0. We call these pointers relative row indices. This
scheme bears some similarities to a scheme based on the idea of a “representative”
column due to George and Liu [10].

The principal advantage of a relative row-index scheme is the efficiency with
which a column (%, above) can be added to or subtracted from its rnext column
(J, above). The pseudo-ALGOL for such an operation is

for ::= 1 to nk do
aa(y + ptr(k + i)) := aa(y + ptr(k + 1)) + aa(k + 1);

assuming column % has nk off-diagonal nonzeros and variables j and & point to
the beginnings of columns % and j in aa.

When an absolute row-index scheme is employed, the code for adding or
subtracting two columns is more complicated. Gustavson [12] and Eisenstat et al.
[3] avoid a complicated inner loop by unpacking one of the columns into a
temporary array of size n and using a loop similar to the one above. This scheme
suffers from a significant drawback: the code accesses this large temporary in a
random way, degrading performance on a machine with a cache memory.

The new scheme has several advantages. Because it accesses memory almost
sequentially, it makes good use of a cache memory. Efficient implementation on
a vector machine is possible. The pointers it uses are all small integers; in a
storage-critical situation more of them can be packed into a word. When redun-
dancies in the relative row indices are fully exploited, their number can be
reduced. For £ X k grid problems %? pointers are required. Previous methods
have required at least 12%? row indices [10, 16]. Section 5 gives a detailed analysis

ACM Transactions on Mathematical Software, Vol, 8, No. 3, September 1982.

258 . Robert Schreiber

of storage requirements for these problems. An analysis of implementation on
vector computers is given in Section 6. A discussion of symbolic factorization and
a numerical experiment to determine pointer storage requirements for general
sparse problems is given in Section 7.

Relative row-index schemes are not useful for solving Ax = b with arbitrary
nonsymmetric A. But if A has a symmetric nonzero structure and can be factored
as LU (without partial pivoting) so that the structure of U, which is the transpose
of that of L, can be precomputed, then a method based on the techniques of this
paper is possible.

A scheme for finite-element systems of Eisenstat et al. [4] has several of the
characteristics and advantages of the proposed scheme, as do the schemes of
Peters [14], and Duff [2].

2. THE NEW SCHEME

Let L be the Cholesky factor of A. We define an n-vertex undirected graph G =
G(L) = (V, E), with vertices V= {1,2,...,n} and edges E = {(,j) |i>jand [,
0}. Define

col(j)= {i>j|l,# 0}, l=sj<n,
row(j) = {k <j|lw# 0}, l1<j=n,
next(j) = min{: € col(j)}, l1=j=n-1,
and
NWL) ={(j,next(j)) EE|1l=j=n-—1}.

The edges (J, next(j)) play a special role in the scheme: the relative row indices
associated with nonzeros in column j of L will point to nonzeros in column next ()
of L.

We now review some graph terminology. Vertices k&, j are adjacent if (&, j) €
E. Ak —jpathin a graph G is a sequence k = vy, U1, ..., U; = J of vertices with
v,—1 adjacent to v,, 1 =i =< L It is monotone if v, > v,_;, 1 =i < . We use the
words smaller and larger for comparing vertices.

A graph is strongly connected if, for every pair &, j of vertices, there isa k2 — j
path. A ¢ree is a strongly connected n-vertex graph with n — 1 edges. Trees have
no cycles; there is a unique path between every pair of vertices. A tree T is
ordered with root n if, for every vertex J, the j — n path is monotone.

If G = (V, E) and V; C V, then the subgraph induced by V;,

Gy, = (Vi, EN (Vi X V).
A clique is a subset V; C V such that
EN(Vix V) =VixV;

in other words, every vertex in V) is adjacent to every other vertex in V.
Since A is irreducible, L is, too. It follows that G (L) is strongly connected.
The fill-in obeys an important law.

PropPosITION 1. If there is a j — k path in G(L) through vertices smaller
than both j and k, then (J, k) € E.

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

A New Implementation of Sparse Gaussian Elimination . 259

Proor. This is an easy consequence of the corresponding statement about
paths in the graph of A [14, Lemma 4]. [

COROLLARY. Ifj = next(k) and Lz # 0, then [, # 0.

The corollary is essential; without it we couldn’t necessarily define a relative
row index for the nonzeros of a column k < n. With it, we know that for every
nonzero in column k there is a corresponding nonzero in column next(k):

col(k) C col(next(k)) U {next(k)}.
PropPoSITION 2. For each 1 < k < n, col(k) is not emply.

Proor: G(L) is strongly connected. Choose any vertex I > k and consider
a bk — [path in G(L). Let I’ be the first vertex on the path larger than k.
Since there is a 2 — [’ path in G(L) consisting of vertices smaller than & or ',
(B, ') EE,and so I’ € col(k). Q.E.D.

Thus, the definition of next makes sense, since the sets whose minima are
required are not empty.

Using relative row indices it is easy to add a multiple of a column to its next
column. The inner loop of our scheme does this. The inner loop of Cholesky
factorization ordinarily subtracts from the pivot column (the jth) a multiple of
each column % of L such that 2 € row (). The key idea is to accumulate instead
a sum of multiples of columns & € row ().

Define the graph T = (V, N(L)). We are going to show that T is an ordered
tree with root n, and for every 1 = j < n, the subgraph Trou)u(s; is an ordered
tree with root j. Thus, for every & € row () there is a unique 2 — j path in 7" that
goes through other vertices in row(j). A sum of appropriate multiples of columns
of L in row(j) is accumulated by a depth-first traversal of Trowyuy;-

Here is an example. Suppose

Then T =

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982,

260 . Robert Schreiber

Since row(6) = {1, 2, 3, 4, 5}, the algorithm will subtract a multiple of each of
those columns from column 6. It can subtract the multiple of column 5 easily
since 6 = next(5). Next, it can add the multiple of column 1 to the multiple of
column 2, add the sum (of 1 and 2) to column 4, add column 3 to column 4, and,
finally, subtract the 1-4 sum from column 6. The algorithm only uses the
operations of adding or subtracting a column to or from its next column. Note
that it was essential that Trouweu6 be an ordered tree with root 6.
Now the proofs.

ProrosiTioN 3. T is an ordered tree with root n.

Proor. Construct T. Start with the single vertex n. Add the preceding vertices
n—1n-2, ...,1, each with its incident next edge. The single vertex n is an
ordered tree with root n. Adding a vertex and next edge leaves the graph ordered
with root n. Q.E.D.

PROPOSITION 4. For every 1 < j < n, Trouwguy) IS an ordered tree with root J.

Proor. Let k € row(j). Consider the (unique, monotone) path from % to n in
T. Let I < j be on this path. Then the edge (J, k) together with the 2 — I path is
a J — [path through smaller vertices; hence (I, j) € E, and I € row(j). [This
diagram illustrates the argument:

||‘ \@

©)

Vertices increase going left to right.] We claim that j is actually on the 2 — n
path, showing that a unique monotone %2 — j path in T.u()u(; exists, which
proves the proposition. Suppose not. Then an edge ([, I') on the path with [<
< I’ exists. But I’ = next(l), so I’ < j, a contradiction. Q.E.D.

A more realistic and interesting example, a 3 X 3 finite-difference grid, is shown
in Figure 2.
For the backsolving scheme, we need one last fact.

ProposiTiON 5. For each 1 < j < n, col(j) is a subset of the vertices on the
path from vertex j to the root n of T.

Proor. Use induction on the depth of j in T'. Certainly, next(j) € col(y) and
next(j) is the first vertex on the j — n path. Moreover, by the corollary to
Proposition 1, col(j) C col(next(j)) U {next(j)}. Q.E.D.

3. AN IMPLEMENTATION OF THE NEW SCHEME

In this section we present the details of an implementation of the new sparse
LDLT factorization method. The data structure is covered in Section 3.1. The
algorithm is described in Sections 3.2 and 3.3.

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

A New Implementation of Sparse Gaussian Elimination . 261

T\ ey

Fig. 2. A 3 X 3 fimte-difference gnd.

3.1 Storage Scheme

The nonzeros of L and D are stored in a one-dimensional array, ae. Initially, the
array contains the corresponding elements of the lower triangle of A; the code
overwrites them with L and D. The columns are stored together, sorted by row.

For each 1 <j < n, locdiag(j) + 1 is the location in aa of @, and d,,. Thus, the
tth nonzero of column j is stored in aa (locdiag(j) + i). Also, locdiag(n + 1) is
the location of the last element in aa. An integer array wherenext contains the
relative row indices. Suppose the nonzero in position m of aa is a member of
column % of L, and that j = next (k). Moreover, suppose this nonzero is in the ith
row of L. Somewhere in the storage for column j, say at the I/th position, is a
location for the element /, In other words, [, is stored at aa(locdiag(j) + I).
Then

wherenext(m) = 1.

Note that wherenext need not be defined for elements on the diagonal; they are
never subtracted from elements in other columns.

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

262 . Robert Schreiber

Y i
Fig. 3. Storage of T.
son — ==} —11]3 |5
brother | —[— |4 6] —| —
1 2 3 5 6 7
where-
aa next locdwag son brother
1111 — 1 0 —| —
51 1 2 3 —_ —_
71 2 3| 6 -1
22 — 41 9 — 2
5|62 1 5| 12 3| —
72 2 6| 16 4 5
33 — 71 20 6 —_
53 1 8| 23 7 —
| 93 4 9 25 8 —
10) 44 — 10} 26
64 1
| 94 | 4
55 —
75 1
15 85 2
1 95 | 3
66 —
76 1
86 2
201 96 | 3
7 —_—
87 1
[97 | 2
88 _—
25{ 98 | 1
99 | -

Fig. 4. Storage scheme applied to the 3 X 3 grid example of Figure 2.

T is encoded as a binary tree. An array son(j) contains a pointer to any of the
sons of vertex j in 7. Remaining sons are linked in a linear list, with pointers
stored in brother (see Figure 3). Note that the next links are not stored. Figure 4
illustrates this storage scheme applied to the example of Figure 2. The numbers
in aa are the indices (i, j) of the element /,, stored at that position. It may be
advantageous to store diagonal elements in a separate array; the n unused
pointers could then be eliminated.

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982

A New Implementation of Sparse Gaussian Elimination . 263

3.2 The Numeric Factorization Algonthm

The following pseudo-ALGOL procedures perform the Cholesky factorization of
the matrix [a,,]), overwriting a,, with [, for i > j and a,, with d,,. It uses a column-
oriented method. At the jth step it subtracts from column j a muitiple of each
column %k € row(j) by first accumulating such column muitiples.

1. procedure factor (a, n)

2. integer n; real array q;

3. begin integer i, j, &;

4. forj:=1ton

5. begin real array ¢;

6. for k € row(J)

7. if next(k) = j then begin
8. searchtree (7, &, t);

9, for 1 € col(y)

10. Q= Ay — t.

11. end;

12. for i € col(j) a,; == a,/a,,
13. end

14. end (factor);

1. procedure searchtree (J, &, ¢)

2. integer j, k; real array ¢;

3. comment add to ¢ multiples of all columns ! € row(7) in the subtree of T rooted at
column k;

4. begin integer i, /; real amult;

5. real array t;

6. comment the temporary ¢”* accumulates the multiples of columns;
7. if & € row(j) then begin

8. amult := ap. * au;

9. for i € col(k) t* .= amult * ay;

10. for I < k if next(l) = k then searchtree (j, I, t%);

11. fori € col(k) t, =t + t)*

12. end

13. end (searchtree);

We now briefly discuss how membership of column k in row(j) can be
efficiently determined (line 7 of searchtree), how elements a,, can be located in
aa, and how temporary storage (the ¢ vectors) can be managed.

Define, for every k € row(J)

first(k, j) = the relative position of [in column £’s storage
and let first(j, j) = 1. Note that, if j = next(k), then first(k, j) = 2. The part of
column £ that is subtracted from column j begins at locdiag(k) + first(k, j), and
has length
num(k, j) = locdiag(k + 1) + 1 ~ (locdiag(k) + first(k, j)).
Also, define
numcol(k) = locdiag(k + 1) — locdiag(k),

which is the number of nonzeros, counting the diagonal, in column % of L.
ACM Transactions on Mathematical Software, Vol. 8, No 3, September 1982

264 . Robert Schreiber

furst(7,7) = 1
\-

T

o 551 75|85] 95 66| 76|86 |96 -
first (5, 7y = 2 s 313 first(6,7) =2
R Sy

f/ \\
// ~ ~
pad \‘
33[53]93 11151171 22162 {72 441 64|94
1| 4 1} 2 112 11 4
lastfirst(3) = 2 first(1,7) =3 first(2,7) =3 lastfirst(4) =2

lastfirst(1) = 2 lastfirst(2) = 2

) A tree link traversed and
(3.1) satisfied.

___________ > A tree link traversed, but
(3.1) not satisfied.

Fig 5. Data structures used during depth-first search

For each pivot column j, the program does a depth-first search of the subtree
Trownuiyy starting at the root, vertex j. At every internal node k, a temporary
vector tempk of size num(k, j) is allocated and initially filled with the contribution
of column % to the pivot column. The sons of vertex % in Tiow(yu(, are then all
searched, the temporary tempk being passed to each of them. Then the elements
of tempk are added to the temporary passed by vertex-%’s father; correspondence
of elements is determined using column &’s wherenext pointers.

In some implementations of sparse elimination a data structure for representing
row(j) is maintained during numeric factorization; the columns belonging to
row(j) are explicitly available from that data structure [15]. In this implemen-
tation membership in row(j) is determined as part of the tree search process.

When a son &’ of % is searched, the pointer first(k, j) is passed. Whether £’ is
an element of row(j) at all can be determined by attempting to find the location
first(k’, j) of the element [, ;.. For, if 2’ € row(j), then [, .- # 0, so there exists p
such that

wherenext(locdiag(k’) + p) = first(k, j), (3.1a)
1 < p < numcol(k’). (3.1b)

If such a p exists, then we set first(k’, j) = p and continue the search process.
If not, 2" & row(j), and the search immediately backtracks to column &.

It is not actually necessary to search the pointers of column £’ to either find a
p satisfying (3.1) or determine that none exists—only one value of p need be
examined, one larger than the last to have satisfied (3.1). We store this value of
p in lastfirst(k’); initially it is 1. Figure 5 illustrates the depth-first search of
Trowmuen for the 3 X 3 example of Figure 2.

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

A New Implementation of Sparse Gaussian Elimination . 265

Note that the overhead associated with tree searching is small, since the
operations performed on every traversal of a tree edge are not dependent on the
number of nonzeros in the corresponding columns.

The storage requirement of the method is certainly no greater than for absolute
row-index methods. In fact, elements of wherenext are all less than the maximum
of numcol(j), 1 = j = n, which will ordinarily be much less than n, so more can
be packed in a word. The only other minor issue is that of temporaries. These
can be allocated off a stack. If the depth of T is d, then at most d temporary
vectors are needed. The symbolic factorization can determine the amount of
stack space that will be required.

3.3 Backsolving

It is not evident that the relative row-index scheme is at all suitable for backsolv-
ing

Lz =, (3.2a)
or
L™ = D'z (3.2b)

It appears at first that, to access b, z, and x (which share the same n storage
locations) absolute row indices are required. These could be precomputed (by the
symbolic factorization routine) and stored, or they could be generated from the
relative row indices after the factorization is accomplished. The first alternative
costs storage, the second, time.

It is, however, possible to solve both (3.2a) and (3.2b) using relative row indices.
Moreover, the resulting algorithm accesses storage in a more nearly sequential
manner than the obvious absolute row-index algorithm. Other advantages of
relative row indices have already been mentioned. Thus, this scheme is as
attractive for backsolving as for factorization.

The forward solve (3.2a) is done by a depth-first search of T. The basic process
is, as in the factorization, the accumulation in temporary storage of multiples of
columns of L. Here is a pseudo-ALGOL procedure. A call to fwd-solve(n) solves
(3.2a). Let T, be the subtree of T rooted at j.

1. procedure fwd-solve(y); comment ¢’ stores {¢]]|i € col(j) U {j}};

2. begin real array t’;
comment determine z; for every & in T and, for all i € col(j) U {j}
set] = Yrerowiuiy 2x e

3. begin

4 for i € col(j)t] =0,

5. t} .= 0;

6. for each son [of 7 begin

7 fwd-solve (1);

8 for i € col(l)t! = t] + ¢!

9 end

10. z,:=0b,—1t};

11. for: € col(j)t| =t + zl,;

12, =t +2;

13. end

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

266 . Robert Schreiber

e (xo)

9)
1] 0 (xs, Xo)

0 (x7, X8, X9)

e (x5, %7, X3, X9)

(6,9)
(1, 4]

Fig. 6. Tree search for LTx = D'z

Note that the accumulation of temporary column multiples (line 8) is done
using relative row indices. A temporary vector for storing {¢}|i € col(j) U {j}}
is allocated when the procedure is invoked and released after being used by the
caller.

Backsolving (3.2b) is also done by a depth-first traversal of T. In contrast to
the forward solve, no information need propagate up: as soon as a vertex k of T
is searched, the value of x; is determined.

To begin, x, = z,/d.,. Now suppose vertex & is searched. Then

PO (3.3)
drr

where the sum is taken over indices i such that ;. # 0, that is, for i € col(k). The
elements of L involved, {L:, i € col(k)}, are a contiguous (numcol(k) — 1)-long
vector. The elements x? = {x,, i € col(k) U {k}} are also needed. Since
(Proposition 5) col(k) is a subset of the vertices on the path from & to the root n,
2™ is already known.

The solution vector x is stored in an n-vector b. It is not convenient to get at
x® by accessing this array: absolute indices are required, and the elements
needed are scattered randomly. Let j = next(k). The algorithm passes a temporary
vector containing x' when searching vertex k. The elements of x reside in
positions pointed to by column &’s relative row indices. The inner loop extracts
these elements, performs the dot product in (3.3), and creates the temporary
vector holding x®, which will be passed to the sons of vertex & in T.

Figure 6 illustrates the backsolve for Example 1. T is shown. To the right of
vertex j is x'’; to the left, col(j) is shown in parentheses; the relative row indices
are in square brackets. When vertex 3 is searched, x5 and xg are extracted from
x® using the relative row indices, 1, 4, of column 3. Then x; = z3/dss ~ (ls3xs +
lo3x9).

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

A New Implementation of Sparse Gaussian Elimination . 267

4. REFINEMENTS TO THE METHOD

Finite-element problems, especially when ordered by nested dissection tech-
niques, lead to matrices with many columns having relative row pointers of 1, 2,
3, ..., v. Such a column has below its diagonal the same nonzeros as its next
column. This situation can be exploited in three ways. Storage for the pointers
can be saved—in fact, they are not needed at all. The inner loop used to add such
a column to its next column can be simplified. The code

for ::=1to nkdo
aalj + 1) := aa(j + i) + aalk + i);

is used—no pointers are needed. Finally, the temporary vector allocated for the
next column can be passed to the sons of this column. The sons’ relative row
indices can be used to access it.

Nontrivial relative row-index sets can be redundant: two different columns may
have exactly the same set of relative row indices, and so only one set would have
to be stored. The difficulty in exploiting this redundancy is in recognizing the
columns with identical relative row indices. One possibility is to exploit symme-
tries of the graph G(L). If there is a k-fold symmetry in the graph, and the nodes
are suitably numbered, then in general a vertex will have a row-index set identical
to that of its £ — 1 images. The model problem of Section 5 is another such
situation.

5. A MODEL PROBLEM

For a symmetric n X n matrix A we define the undirected graph G(A4) =
(V, E(A)), where V = {1, 2, ..., n}, and E(4) = {(i,)| a, # 0}. The model
problem is a symmetric positive definite problem with n = k% and a & X k “grid-
graph.”

Ga) = - J
o« .- zﬁi

Thus, vertices are adjacent to every other vertex with which they share a square
cell, or element.

With a row-by-row ordering of the vertices, A is banded with bandwidth £ + 1.
To best utilize sparse matrix techniques, the vertices of G(A) are ordered by
nested dissection [1, 5]. The vertices of a separating cross are numbered last. The
remaining vertices constitute four independent grid-graphs of size (& — 1)/2 by
(® — 1)/2. These are numbered by (recursively applying) nested dissection. For

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982

268 . Robert Schreiber

example, with & = 7, G(A) is

30 36 31

43

34

a5 |28 29

37 38 3|9 46

42 41 40

—t

47

48

49

(The numbering of the other 3 X 3 subproblems is obvious.) The first level’s
separating cross consists of a vertical separator Cv (nodes 43-49), a left-horizontal
separator Cr (nodes 37-39), and a right-horizontal separator Cr (nodes 40-42).
The whole cross is denoted by C, where

C=CvUCLU Ck.

The structure of the Cholesky factor L of A, and hence of its graph G, can be
surmised from Proposition 1. G¢, the subgraph of G describing the last 2k — 1
rows and columns of L, has the structure

The “vertices” of this graph represent cliques, and the heavy lines indicate that
all possible edges are present. We suppose that the three separators of a cross
are always numbered in this sequence: vertices of Cy, vertices of Cr, vertices
of Cv.

In effect, nested dissection defines a binary tree of grids; its structure is
mirrored in the structure of the tree 7. For the example with the numbering

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982

A New Implementation of Sparse Gaussian Elimination + 269

shown, Tc¢ is

49
48
47
. 43
42 39
41 38
40 37

There is a chain of seven vertices (those in Cv) and two subchains, of three
vertices each (one for Cr. and one for Cr). Denote by 0==0 a chain of length r, let
k=2"—1,and k, = 2™ — 1. The tree for nested dissection of a & X k& model
problem is shown in Figure 7.

A number of questions arise. For example, how well do the optimizations of
Section 4 work for these problems? What is the amount of storage used for
relative row indices? How large must the stack be? What will be the cost, in
running time, for each multiplication, compared with that of a standard imple-
mentation?

We first show that only 122 row indices remain if trivial sets are not stored. At
level / in the dissection, square subgraphs of size k; = 2" — 1 remain; Figure 8
illustrates the case I = m — 2. The numbers shown indicate the order in which
these vertices are eliminated, rather than their number in the overall ordering of
the grid.

When vertex 7 is eliminated, it is adjacent to all the vertices 8-25, that is, to all
vertices on its separator and on the four surrounding separators. (For subgrids at
the edge of the graph there will be only two or three surrounding separators.)
Obviously, next(7) = (8). Vertex 8 is adjacent to the same vertices as 7, so the
relative row indices of vertex 7 are just 1, 2, ..., 18. Similarly, vertex 8 has a
trivial relative row-index set. In fact, it is clear that for all but the highest
numbered vertex on any separator, the row-index set is trivial. So, only one row-
index set is needed for each separator in the grid.

To bound the total number of pointers required, assume I levels of nested
dissection have left 2 independent square grids of size (2™ — 1). The first
separator of each of these will be adjacent to at most four surrounding separator
pieces, each of size 2"/, and is itself 2" — 1 long, so less than 5.2™ pointers are
needed for its vertices. The two second separators are each 2" — 1 long, and
are adjacent to two separator pieces of size 2"~ and two of size 2"}, so two sets
of less than 7.2™~"" pointers are needed for these two separators. The total count

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982.

270 . Robert Schreiber

separating cross
at
level 0

separating crosses
L at
level 1

separating crosses
at
level
m-—2

. W m~|~£
Ry

1 x 1 problems.

Py

Fig. 7. Separator tree for & X k model problem.

of pointers, therefore, is bounded by

m—2

Y 12.2771.2% < 12k*

=0
This agrees with the results of Sherman [16] and George and Liu [10], who use
a different storage scheme, but take advantage of the structure of the model
problem in essentially the same manner.

A second question is how much stack space for temporaries is needed. Edges

of T within one of the separator chains meet the requirement for not generating
a new temporary. So only one temporary vector, of length &, = 227 is needed for

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1982

A New Implementation of Sparse Gaussian Elimination . 271

O 0, O, &, O,
®; O i-_;_;_'! o . 8y
o, o Fig. 8. A 3 X 3 subgrid.
oy o E_.g._; o O
0 Oy &, & O

each chain at level j. The total requirement is then

m-1

Y ki + k< 3k

1=0
words. Thus the stack is of trivial size compared with the storage for L, or even
compared with that needed for the pointer arrays locdiag, son, and brother.

These results can be generalized to dissection orderings of arbitrary graphs, as
proposed by Lipton et al. [13], and George and Liu [9].

Next, consider the possibility that nontrivial row-index sets are repeated. This
occurs frequently in the model problem. In fact, only a constant number of
different row-index sets occurs for vertices on separators at a given level. At level
m — 1, the sets have O(2) elements, and no more than C of them are required,
where C is independent of n and I. Thus O (k) relative row indices are needed!

Of course, when sharing the relative row indices, a pointer is needed for every
vertex showing where its relative row indices are stored. Thus, we require only

k% + O(k)
pointers for the model problem, a 12-fold savings compared with earlier results.
(It should be noted that 12k? pointers use far less space than the approximately
73k*logsk nonzeros in L, so the overall storage savings are relatively minor.) This
sort of situation occurs whenever a simple repeated pattern of elements is used
to discretize a differential equation.

The method requires storage for three auxiliary arrays of size n. This is the
same number required by the numeric factorization routine of the Yale sparse
matrix package [3].

An experiment reported in Section 7 shows that for other sparse matrix
problems the pointer storage requirement of this method is nearly the same as
for absolute row-index methods.

6. TIMING FOR A VECTOR IMPLEMENTATION

Consider the » vertices on a separator. Assume that each is adjacent to u other
higher numbered vertices and to the higher numbered vertices of the separator.
The situation for the vertical separator of an interior subgrid is this:

M C)

H=by

U v,

C

ACM Transactions on Mathematical Software, Vol. 8, No. 3, September 1952.

272 . Robert Schreiber

There are u + » — j + 1 elements in the column for the jth vertex of the separator.
For each of these there is a column from which the given column will be
subtracted.

Except for the highest numbered vertex of the separator, all the vertices j are
sons in 7T of a vertex with the same col set. Therefore, the wherenext pointers for
these vertices are just (1, 2, 3, . .., numcol(j)). Therefore, whenever column j is
used by the factorization algorithm, it is just multiplied by a scalar and added to
another vector.

We assume a machine in which the cost of multiplying a vector of length V by
a scalar is Sy + PaV, and the cost of adding two vectors of length Vis Sy + P4 V.
Sm, Pu, Sa, and P4 are machine-dependent constants. Syr and S4 are called
“start-up” costs. On current machines, S, > P, for either operation x = M, A.
The total of all costs for the jth vertex of the separator is, then,

viu

Y (Sa+Su)+ Pa+Pu)r+p+1-1)

1=7+1

r+p—pPr+p+1-y)

=@w+p—jNSa+ Su) + 3 (Pa + Pu).
The cost for all vertices 1 < j < » of the separator is approximately
(p+v=j)
(Sa + Su) }] (v+u—Jj)+ (Pa+ Py ZT
J=1
Sa+ S P,+ P
=—(A2—M)[(u 0=+ 2D -)

We have ignored the complications due to the inapplicability of this analysis to
the last vertex of a separator.

The separators at level 0 are a vertical separator of length v = &k = 2™ — 1, and
twooflength v =2"""'— 1, withu=~k=2" - 1.

The cost for these are (from the analysis above)

(Sat S [0, 8,0] , Pat P, 38,
at sl 8] Bt)

At deeper levels, there are three different types of regions to be separated:
corners, sides, and interiors. At levels /, the regions being separated are of size
(277! — 1) = k; square. There are 4’ such regions. Of these, 4 are corners, 4(2' — 2)
are sides, and (2 — 2)? are interior. For corner regions there is a vertical separator
with » = k; and p = 2k; + 1, and two different horizontal separators with v = ks,
and p = 5k, + 4 and p = 3k + 2, respectively. For sides, there is a vertical
separator with » = &, and p = 3%, + 2, and two horizontal separators with v = ks,
and p = 5k141 + 4. Finally, in interior regions, the vertical separator has » = %; and
p = 4(k; + 1), while the horizontal separators have » = k. and p = 6(ky + 1)
(see Figure 9). Summing all the contributions at level { yields, approximately, for
1=1,

(Sa + Swm) (22 -2) (2! - 2)?
C = T 9 K [221 + 50 9 + 62 922
Py + Py 140 (-~ 2) 371(2! — 2)2
+ <————6) k? [o7 + 239 + 53T

ACM Transactions on Mathematical Software, Vol. 8, No 3, September 1982

A New implementation of Sparse Gaussian Elimination . 273

CORNER W

SIDE

Fig. 9 Corner, side, and interior regions

INTERIOR

—_ ||

Summing the various geometric series yields a total cost of

m , 829 31 .
Z Ci=k’(Pa + Py)- -—8—4—+ k° loge B(S4 + Su) - T+ Ok°).
=0

George et al. [7] proposed an implementation of sparse Gaussian elimination
that uses a block factorization and is most suitable for matrices arising from
dissection of grids. The corresponding timing for this scheme is

) 3
k';li(PA + Py % + P %] + k2 10g2 k[(SA + Su) Zl + S 17] + O(kz),

the time for an inner product being St + P;V. Thus both schemes do the same
number of operations, but the new scheme avoids the use of inner products,
which on some machines are relatively slow, and also saves 17%® log; & start-ups
of inner products. We have neglected an additional O(1) start-ups associated with
the last vertex of every separator. As there are approximately %°/4 separators in
total, this does not change the leading terms.

George et al. [8] have shown that an incomplete nested dissection ordering, in
which dissection stops one or two levels early and the remaining small grids are
ordered row by row, yields an improved time estimate when using their imple-
mentation. The same observations are valid with the new scheme. When stopping
with small grids, it may be better to treat the corresponding matrices as dense,
thereby saving some storage for pointers and some vector start-ups.

7. SYMBOLIC FACTORIZATION
In order to use an absolute row-pointer storage scheme in a sparse matrix code,
the nonzero structure of L has to be determined. This is done before numeric

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982,

274 . Robert Schreiber

factorization, but after a suitable ordering of the rows and columns has been
obtained. A “symbolic factorization” of 4 is carried out. Lists of the nonzeros in
the columns of A are input; lists of the nonzeros in L are output. By merging the
completed lists for columns k& € row(j) into the list for column j (initialized with
the nonzeros from A) the nonzeros in column j of L are obtained.

In part, sparse Gaussian elimination is a success because symbolic factorization
can be done efficiently. The key to its speed is that if j = next(k) = next(next(k’)),
then there is no need to merge the nonzero list of column %’ into the list for
column j: since col(k’) C col(k) U {k} already, all the necessary nonzeros are
represented in the column £ list. Thus, only lists of cclumns & € next™'(j) (the
sons of j in T') need be merged into the j list. The speed of this accelerated
procedure is thus proportional to the size of L (since each column except the last
is merged exactly once) and this is usually much smaller than the number of
operations done during the numeric phase.

In the Yale sparse matrix package [3] and a method of George and Liu [10],
symbolic factorization is even faster. The output is a compressed representation
of the nonzero lists; redundancy in the lists is exploited, much as we have taken
advantage of trivial relative row-index sets. These methods have running times
proportional to the size of their compressed outputs, usually much smaller again
then the size of L.

The obvious approach te symbolic factorization with relative row indices is to
use an existing absolute row-index method, then process the output to get the
relative row indices. But such a scheme would seem to have to spend a lot of time
searching for elements in lists or arrays of indices, so it has not been pursued.

The essence of the problem is this. Lists of the nonzeros in columns (of L)
k € next™'(y) are merged with the nonzero-list of column j (of A) to form
the nonzero-list of column j of L. In addition to this (ordered and linked) list, we
also must find, for every element of every k-list, the relative position in the j-list
of the nonzero in the same row.

We have implemented a code to do this with a small modification of the routine
SSF of the Yale package. This code processes columns in the order 1,2, ..., n.In
processing column j it creates a list of the nonzero elements of this column of L
(the j-list). An n-long array q holds the j-list in a linked form:

o=[% i Ly=0
q i,/ if L,#0 and ¢ =min{{n+ 1} U {r>i|L, # 0}).

After the array ¢ is created it is traversed, the nonzeros in column ; are stored in
an array holding the nonzero-lists of columns of L, and each entry is replaced by
its relative position in the list. The code is this:

i:=0;

mm = J;
loop: m := mm;

store m into j-list;

mm = q(m);

i=1+1

q(m) =1y

if mm =< n then go to loop;
Finally, every k-list (for 2 € next '(7)) is traversed, and each (absolute) row
index is replaced by the relative index in the element of ¢ to which it points. This

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

A New Implementation of Sparse Gaussian Elimination . 275

Table]I Companson of Symbohic Factorization Codes

Relative scheme Absolute scheme
Time
Problem N (seconds) ptrs Time ptrs
Graded-L 3937 0.242 26862 0.195 26733
Square 4225 0.256 27931 0211 27834
H-domain 5185 0295 30711 0244 29920

process is slower than the unmodified procedure, since every k-list is scanned
twice.

The arrays son and brother are also constructed during symbolic factorization.
Initially all entries are zero. Whenever a j-list is completed, 7 is added to the list
of sons of next(j) by setting

brother(j) := son(next(j)) and son(next(j)) := J.

Of course next(j) is known since it is the second element in the j-list. Whenever
the set next™'(j) is needed, the arrays son and brother are used to generate it.

Trivial row-index sets can be recognized readily. They occur when either (case
A) £ is the only column in next'(j) and every nonzero in column j of A is present
in column % of L; or (case B) the number of nonzeros in column % of L below the
diagonal is the same as the number of nonzeros in column j = next(k) (including
the diagonal). In case A the merging of lists and creation of the j-list can be
avoided altogether by making the k-list the j-list.

A potential difficulty (observed by the referee) is that of putting the elements
of A into the data structure. This can be done by replacing the absolute row
indices of these elements with their relative row indices, exactly as is done for
columns of L. This might involve the use of an additional array of pointers, one
for every nonzero in A.

An experiment was done to compare the speed of this “relative” symbolic
factorization to that of the “absolute” version in the Yale package. Three test
problems due to George and Liu [11] were used; we omit a detailed description.
Orderings were generated using the Yale minimum-degree subroutine. The results
are shown in Table I. The times shown are each the average of two trails. The
numbers of row indices generated are also shown. The experiments were done on
the IBM 3081 at the Stanford Linear Accelerator Center (SLAC). The data show
that the relative code takes between 20 and 25 percent more time than the
absolute code. Because numeric factorization is so much more time-consuming,
this difference is not important.

ACKNOWLEDGMENT
I am especially grateful to Mr. Philip Kuekes for his suggestions and comments.

REFERENCES
(Note. Reference [6] 1s not cited n the text)

1. BIRKHOFF, G , AND GEORGE, J.A Elimmation by nested dissection In Complexity of Sequential
and Parallel Numerical Algorithms, J. F. Traub (Ed), Academic, New York, 1973.

2. DurF, 1.S. Full matnx techniques n sparse Gaussian elimmation. In Proc. Dundee Conf. on
Numerical Analysis, Springer-Verlag, New York, 1981.

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

276 . Robert Schreiber

3.

10

11.

12

13

14

15.

16

Eisenstat, S.C., Gursky, M.C,, Schurtz, M H., AND SHERMAN, A.H. Yale sparse matrix
package I. The symmetric codes. Res. Rep. 112, Yale Computer Science Dep. Yale Univ., New
Haven, Conn.

. E1SENsTAT, S.C., ScHULTZ, M.H., AND SHERMAN, A.H. Software for sparse Gaussian elimination

with limited core storage. In Sparse Matrix Proceedings, Iain S. Duff and G.W Stewart (Eds.),
SIAM, 1978.

. GEORGE, A. Nested dissection of a regular finite element mesh. SIAM J. Numer Anal 10

(1973), 345-363

. GEORGE, A Numerical experiments using dissection methods to solve n by n gnd problems.

SIAM J Numer Anal. 14 (1977) 161-179.

. GEORGE, A, PooLe, W.G.,, aND Voict, RG. Analysis of dissection algonthms for vector

computers Math Dep. Tech. Rep. 13, College of William and Mary, Wilhamsburg, Va, 1976.

. GEORGE, A., PoOoLE, W G, AND VoIGT, R G. Incomplete nested dissection for solving n by n grid

problems. SIAM J. Numer Anal. 15 (1978), 662-673.

GEORGE, A., aND Liu, JWH An automatic nested dissection algorithm for irregular finmte
element problems. SIAM J Numer Anal 15 (1978), 1053-1069.

GEORGE, A, aND L1u, JWH. An optimal algorithm for symbolic factorization of symmetric
matrices. Res Rep. CS-78-11, Faculty of Mathematics, Univ. Waterloo, Waterloo, Ont , Canada

GEORGE, A, aND Liu, J.W. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, N J , 1981.

GustavsoN, F.G. Some basic techmques for solving sparse systems of linear equations. In
Sparse Matrices and Their Applications, D.J. Rose and R.A. Willoughby (Eds), Plenum, New
York, 1972.

LiproN, R J, RoSE, D.J., AND TarJAN, R.E. Generalized nested dissection. SIAM J Numer
Anal. 16 (1979), 346-358.

PeTERS, F.J. Sparse Matrices and Substructures: A Novel Implementation of Finite Element
Algorithms. Mathematical Center Tracts MC 119, The Mathematical Center, 49, 2e Boerhaav-
erstratt, Amsterdam

Rosg, D J., TarsaN, R.E., AND LUEKER, G.S. Algorithm aspects of vertex ehmination on graphs

SIAM J Comput 5 (1975), 266-283.

SHERMAN, A.H. On the Efficient Solution of Sparse Systems of Linear and Nonlinear Equa-
tions Ph D. Thesis, Yale Univ , New Haven, Conn., 1975.

Received February 1981, revised August 1981, accepted March 1982

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

